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Abstract

Design sketch and mathematics for a new approach to building coadds and con-
straining their inputs.
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Cell-Based Coaddition

1 Likelihood Coadds

1.1 Derivation and starting assumptions

We start by writing the log likelihood of an arbitrary model of the local sky, 𝛼, given multiple
images 𝑧𝑗 with differing PSFs 𝜙:

𝐿 ≡ 1
2 ∑

𝑗
𝑹𝑇

𝑗 𝑪−1
𝑗 𝑹𝑗 (1)

where the residual vectors1 𝑹𝑗 are defined as

𝑅𝑗[𝒙𝑗] ≡ 𝑧𝑗[𝒙𝑗] − ∫𝑑2𝒓 𝜙𝑗(𝑨𝑗𝒙𝑗 + 𝒃𝑗 − 𝒓) 𝛼(𝒓) (2)

where 𝒓 are coordinates in the projection we will coadd onto, and 𝑨𝑗 and 𝒃𝑗 are the linear
transform and translation that map input-image coordinates 𝒙𝑗 to 𝒓. Note that we define the
PSF and model in coadd coordinates, not input-image coordinates. This likelihood is local
because we have assumed the PSF is not spatially varying and the transformation is affine
– a valid assumption in the neighborhood of any particular point, but not over larger scales.
This is a common feature of the approaches to coaddition described here: we will explicitly
subdivide the sky into small cells whose maximum extent is set by the scales on which these
assumptions are valid.

This likelihood is quite general in many respects:

• the input pixel grid may or may not be well-sampled;

• pixels on the same image may have arbitrary noise correlations;

• pixels with no data or artifacts can simply be omitted from the sum, provided they can
be identified.

1When we use matrix notation on image-like entities, we will invariably mean that the 2-d image is flattened
into a 1-d vector.
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We will need to place restrictions on these to make the method computationally tractable in
later steps. In other respects, we have made powerful simplifying assumptions:

• all images have been background subtracted in advance;

• the true sky is completely static (𝛼 is the same for every epoch);

• there is no wavelength dependence at all - so either the true sky is monochromatic,
or all PSFs have the same throughput as a function of wavelength, so all wavelength
dependency cancels.

We will relax each of these assumptions in later sections.

We now expand the quadratic log likelihood and group by powers of 𝛼:

𝐿 = 𝜅
2 − ∫𝑑2𝒓 Ψ(𝒓) 𝛼(𝒓) + 1

2 ∫𝑑2𝒓∫𝑑2𝒔 Φ(𝒓, 𝒔) 𝛼(𝒓) 𝛼(𝒔) (3)

with

𝜅𝑐 ≡ ∑
𝑗

𝜅𝑗 ≡ ∑
𝑗

∑𝒙𝑗
∑𝒚𝑗

𝐶−1
𝑗 [𝒙𝑗 , 𝒚𝑗] 𝑧𝑗[𝒙𝑗] 𝑧𝑗[𝒚𝑗] (4)

Ψ𝑐(𝒓) ≡ ∑
𝑗

Ψ(𝒓) ≡ ∑
𝑗

∑𝒙𝑗
∑𝒚𝑗

𝐶−1
𝑗 [𝒙𝑗 , 𝒚𝑗] 𝑧𝑗[𝒙𝑗] 𝜙𝑗(𝑨𝑗𝒚𝑗 + 𝒃𝑗 − 𝒓) (5)

Φ𝑐(𝒓, 𝒔) ≡ ∑
𝑗

Φ(𝒓, 𝒔) ≡ ∑
𝑗

∑𝒙𝑗
∑𝒚𝑗

𝐶−1
𝑗 [𝒙𝑗 , 𝒚𝑗] 𝜙𝑗(𝑨𝑗𝒙𝑗 + 𝒃𝑗 − 𝒓) 𝜙𝑗(𝑨𝑗𝒚𝑗 + 𝒃𝑗 − 𝒔) (6)

(7)

Ψ𝑐 and Φ𝑐 are sufficient statistics for our model (𝜅𝑐 does not constrain the model; it enters
only if one is interested in the Bayesian evidence or other goodness-of-fit measures), and
they include all sums over input images. But as continuous functions, we can’t consider them
a coadd, let alone a practical one.

2



Cell-Based Coaddition | DMTN-075 | Latest Revision 2021-10-06

If we choose our output grid such that all input PSFs arewell sampled, however, we can replace

𝜙𝑗(𝑨𝑗𝒙𝑗 + 𝒃𝑗 − 𝒓) = ∑𝒑
𝜙𝑗(𝑨𝑗𝒙 + 𝒃𝑗 − 𝒑) sinc2(𝒑 − 𝒓) (8)

and obtain

Ψ𝑐(𝒓) = ∑𝒑
Ψ𝑐(𝒑) sinc2(𝒓 − 𝒑) (9)

Φ𝑐(𝒓, 𝒔) = ∑𝒑 ∑𝒒
Φ𝑐(𝒑, 𝒒) sinc2(𝒓 − 𝒑) sinc2(𝒔 − 𝒒) (10)

i.e. Ψ𝑐 and Φ𝑐 are guaranteed to be well-sampled as well, even if the input pixel grids are
not. We are still quite far from a practical coadd, however; we want an image as well as a
PSF and/or covariance matrix that enter into the likelihood in essentially the same way that a
single input image does. That means we want to solve

Ψ(𝒓) = ∑𝒑 ∑𝒒
𝐶−1

𝑐 [𝒑, 𝒒] 𝜙𝑐[𝒓 − 𝒑] 𝑧𝑐[𝒒] (11)

Φ(𝒓, 𝒔) = ∑𝒑 ∑𝒒
𝐶−1

𝑐 [𝒑, 𝒒] 𝜙𝑐[𝒓 − 𝒑] 𝜙𝑐[𝒔 − 𝒒] (12)

for 𝜙𝑐 , 𝐶𝑐 , and 𝑧𝑐 . There is no single unique solution, and in fact no guarantee of any solution
for completely general inputs. This approach is one limit of the IMCOM method of ?, which
utilizes a weight function that minimizes S/N losses during coaddition along with errors in PSF
reconstruction; when there is no S/N loss and the PSF reconstruction is exact, their solution
satisfies [11] and [12], while providing diagnostics when no such solution is possible. IMCOM is
also extremely computationally expensive, as is anymethod that relies on direct accumulation
of a fully general Φ. In this technical note, we will instead focus on methods that start with
simplifying assumptions that are at least mostly true, and then investigate ways to iteratively
and incrementally deal with those assumptions being weakly violated.

The first of these simplifying assumptions is that the input noise in each image is constant:2

𝐶𝑗[𝒙𝑗 , 𝒚𝑗] → 𝜎2
𝑗 𝛿[𝒙𝑗 − 𝒚𝑗] (13)

2It should be possible to assume only that the noise is stationary, but the algebra is much more involved.
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A single-input contribution to Φ𝑐 is then

Φ𝑗(𝒓, 𝒔) = 1
𝜎2

𝑗
∑𝒙𝑗

𝜙𝑗(𝑨𝑗𝒙𝑗 + 𝒃𝑗 − 𝒓) 𝜙𝑗(𝑨𝑗𝒙𝑗 + 𝒃𝑗 − 𝒔) (14)

with Fourier transform

Φ̃𝑗(𝒖, 𝒗) = 1
𝜎2

𝑗
𝜙𝑗(−𝒖) 𝜙𝑗(−𝒗) 𝑒−2𝜋𝑖𝒃𝑇 (𝒖+𝒗)

∑𝒙𝑗

𝑒−2𝜋𝑖𝒙𝑇
𝑗 𝑨𝑇

𝑗 (𝒖+𝒗) (15)

To simplify further, we’d like to be able to apply the Poisson summation formula to the sum
over 𝒙𝑗 , but we need to be careful about the summation limits; so far we’ve implicitly (and
vaguely) summed over all input pixels relevant to a cell, excluding any completely missing pix-
els. To instead sum over ℤ2, we need the original sum in [2] to truncate outside some finite
region by defining both 𝑧𝑗 and 𝛼 to be zero outside that region, and we need to assume there
are no missing pixels. Neighboring cells will necessarily define truncation inconsistently from
each other, so we will also need to build the coadd for a cell with some padding, such that
coadd pixels within the cell are (to good approximation) not affected by the truncation, and
thus consistent with their neighbors. How much padding will depend on the details of the al-
gorithm, and the degree towhichwe aim for compactness in the real domain vs. compactness
in the Fourier domain.

With these qualifications, Φ̃𝑗 becomes

Φ̃𝑗(𝒖, 𝒗) = 1
𝜎2

𝑗
𝜙𝑗(−𝒖) 𝜙𝑗(−𝒗) 𝑒−2𝜋𝑖𝒃𝑇 (𝒖+𝒗)

∑
𝒌𝑗∈ℤ2

𝛿 (𝒌𝑗 − 𝑨𝑇
𝑗 (𝒖 + 𝒗)) (16)

But 𝜙𝑗 is band-limited on the coadd pixel grid, so 𝜙𝑗 is zero if |𝒖|1 ≥ 1
2 or |𝒗|1 ≥ 1

2 , and we can
assume |𝒖 + 𝒗|1 < 1. Considering the case where 𝑨𝑗 is a uniform scaling for simplicity:

• if |𝐴𝑗| < 1, the coadd pixels are larger than the input pixels; only the 𝒌𝑗 = 0 term in the
sum survives (note that the input image then must be well-sampled, because the coadd
is).

• if |𝐴𝑗| > 1, the coaddpixels are smaller than the input pixels, andother termsmay survive
only if 𝐴𝑗 is greater than twice the actual band limit of the PSF – or, in other words, only
if the input image is not well sampled.
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Our final simplifying assumption is naturally that the input images are well-sampled; this
yields

Φ̃𝑗(𝒖, 𝒗) = 1
𝜎2

𝑗
𝜙𝑗(−𝒖) 𝜙𝑗(−𝒗) 𝑒−2𝜋𝑖𝒃𝑇 (𝒖+𝒗) 𝛿 (−𝑨𝑇

𝑗 (𝒖 + 𝒗)) (17)

= 1
𝜎2

𝑗
|𝜙𝑗(𝒖)|

2
𝛿(𝒖 + 𝒗) (18)

If we then accumulate the contributions from each input image in the Fourier domain, the
delta function factors out of the sum, and we can write

Φ̃𝑐(𝒖, 𝒗) = 𝛿(𝒖 + 𝒗) ∑
𝑗

1
𝜎2

𝑗
|𝜙𝑗(𝒖)|

2
= 𝛿(𝒖 + 𝒗) 1

𝜎2
𝑐

|𝜙𝑐(𝒖)|
2

(19)

This is essentially the continuous Fourier version of [12], but here the solution is trivial, and
in many respects ideal:

𝜙𝑐(𝒖) = 𝜎𝑐√Φ̃𝑐(𝒖, 𝒖) = 𝜎𝑐√∑
𝑗

1
𝜎2

𝑗
|𝜙𝑗(𝒖)|

2
(20)

1
𝜎𝑐

= ∫𝑑2𝒖
√∑

𝑗

1
𝜎2

𝑗
|𝜙𝑗(𝒖)|

2
(21)

Note that

• the coadd PSF 𝜙𝑐 is the Fourier-domain square root of Φ𝑐 ;

• the noise in the coadd is also constant, and its standard deviation 𝜎𝑐 can be derived as
the constant the normalizes the coadd PSF 𝜙𝑐 .

With these in hand, we can compute the Fourier-domain coadd image 𝑧𝑐 from the Fourier
transform of Ψ𝑐 :

𝑧𝑐(𝒖) = Ψ̃𝑐(𝒖) 𝜎2
𝑐

𝜙𝑐(𝒖)
(22)

Obtaining Ψ̃𝑐 from 𝑧𝑗 and 𝜙𝑗 involves a continuous Fourier transform of either noisy, sampled
data or something derived from it; a subtly difficult task. But it is also possible to reframe this

5
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as a linear operation in the image domain:

𝑧𝑐(𝒓) = ∑
𝑗

∑𝒙𝑗

𝐾𝑗(𝒓 − 𝑨𝑗𝒙𝑗 − 𝒃𝑗) 𝑧𝑗[𝒙𝑗] (23)

𝐾𝑗(𝒖) ≡
𝜎2

𝑐 𝜙∗
𝑗 (𝒖)

𝜎2
𝑗 𝜙𝑐(𝒖)

(24)

This simple result still hides a lot of practical complexity, because 𝐾 is

• generally not compact in the image domain (in fact, it is band-limited, and hence formally
must have infinite extent in the image domain);

• potentially expensive to evaluate at the many non-integer points implied by 23.

Overall, it is unclearwhetherwewould be best served by approach that approximates the con-
tinuous Fourier transforms with DFTs (with all of the boundary-condition and folding issues
that always entails) or one that works in the image domain, perhaps with analytic approxima-
tions or basis functions in the representation of 𝜙 that have analytic Fourier transforms. We
will explore several possibilities in Section 2.

1.2 Approximate PSFs

In many case we may not want to use or may not be able to use the best available model of
the PSF when building a coadd. Using an approximation formally breaks the property that the
coadd is a sufficient statistic for the static sky, but the actual information loss could neverthe-
less be quite small (much smaller than the loss due to building naive direct coadds in all cases).
In many of the implementation options we discuss later in Section 2, using an approximation
with an analytic Fourier transform is required. In other cases:

• The approximation may be more compact in the Fourier and/or image domain.

• The approximation may be less affected by measurement noise or numerical instability,
both of which can cause trouble with deconvolution operations.

• The true PSF may be chromatic, so even our best model evaluated with some nomimal
SED is only approximately right for other SEDs.

6
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• We may have already built the coadd with a PSF we now know to be subtly wrong, and
want to understand systematic errors this may have introduced into later processing
and/or update the coadd without starting over.

Because the coadd likelihood will no longer be exactly equivalent to the original joint single-
epoch likelihood with this approximate, we will instead start with [23] as a prescription for
building a coadd, but replace the true (or best-estimate) per-epoch PSFs 𝜙𝑗 with deliberate
approximations 𝑝𝑗 , and then derive the new effective coadd PSF.

We start by expanding 𝐾 with that substition:

𝐾𝑗(𝒖) ≡
𝜎2

𝑐 𝑝∗
𝑗 (𝒖)

𝜎2
𝑗 √∑

𝑛
1

𝜎2
𝑛

|𝑝𝑛(𝒖)|
2

(25)

Note that 𝜎𝑐 is at this stage just an unknown normalization constant; we will show later that
it is equal to the noise on the coadd when the effective coadd PSF is normalized.

To compute the effective PSF of the coadd, we coadd the image of a point source centered at
𝒓 = 0 using [23]:

𝜙𝑐(𝒓) = ∑
𝑗

∑𝒙𝑗

𝐾𝑗(𝒓 − 𝑨𝑗𝒙𝑗 − 𝒃𝑗) 𝜙𝑗(𝑨𝑗𝒙𝑗 + 𝒃𝑗) (26)

It is important here that we use the true PSFs 𝜙𝑗 (or our best-available model). We are also
continuing to rely on our assumption that all input images are well-sampled - without that, 𝐾
would need to be a position-dependent kernel to have a well-defined PSF on the coadd. That
assumption also lets us perform this convolution in coadd coordinates3:

𝜙𝑐(𝒓) = ∑
𝑗

1
|𝐴𝑗| ∑𝒔

𝐾𝑗(𝒓 − 𝒔) 𝜙𝑗(𝒔) (27)

We can now solve for 𝜎𝑐 by requiring

∫𝜙𝑐(𝒓) 𝑑2𝒓 = 1 (28)

3TODO: prove this by a Fourier round-trip; we get another sum where only 𝒌 = 0 survives.
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The noise covariance of the coadd can be computed via straightforward uncertainty propa-
gation:

𝐶𝑐(𝒓, 𝒔) = ∑
𝑗

𝜎2
𝑗 ∑𝒙𝑗

𝐾𝑗(𝒓 − 𝑨𝑗𝒙𝑗 − 𝒃𝑗) 𝐾𝑗(𝒔 − 𝑨𝑗𝒙𝑗 − 𝒃𝑗) (29)

Its Fourier transform is

𝐶𝑐(𝒖, 𝒗) = ∑
𝑗

𝜎2
𝑗 𝐾𝑗(𝒖) 𝐾𝑗(𝒗) 𝑒−2𝜋𝑖𝒃𝑇

𝑗 (𝒖+𝒗)
∑𝒙𝑗

𝑒−2𝜋𝑖𝒙𝑇
𝑗 𝑨𝑇

𝑗 (𝒖+𝒗) (30)

= ∑
𝑗

𝜎2
𝑗 |𝐾𝑗(𝒖)|

2
𝛿(𝒖 + 𝒗) (31)

where the simplification comes from using the Poisson summation formula and rejecting
modes other than 𝒌 = 0, just as in [18]. Substituting the definition of 𝐾 from [25], this simpli-
fies further to

𝐶𝑐(𝒖, 𝒗) =
[∑

𝑗

𝜎2
𝑐

𝜎2
𝑗

|𝑝𝑗(𝒖)|
2
] [∑𝑛

1
𝜎2

𝑛
|𝑝𝑛(𝒖)|

2
]

−1

= 𝜎2
𝑐 (32)

Even with the PSF approximated, the noise in the coadd is uncorrelated and stationary.

With this formalism in hand, we can now look more closely at how this coadd algorithm com-
pares to those in broad use in astronomy. A “direct” coadd is built by simply resampling all
input images to the same grid, and combining themwith a weightedmean. The weights must
be very slowly-varying (often a per-epoch constant), and the combinationmust use a linear op-
erator (no means or sigma-clipping) for the coadd to have a well-defined effective PSF. When
the weights are proportional to the exposure time, this approach is statistically equivalent to
taking a single longer exposure (at least for the ideal, static sky), but it is not optimal when the
input images have different PSFs. In fact, we can see here that it is equivalent to using a delta
function for all PSF approximations 𝑝𝑗 (and kernels 𝐾𝑗 ), or a constant weight in the Fourier
domain; the optimal coadd with 𝑝𝑗 → 𝜙𝑗 instead gives more weight to high spatial frequency
contributions from the best-seeing images.

PSF-matched coadds, in which each input image is degraded to a target PSF that is approxi-
mately the same as the PSF of the worst-seeing image, are naturally even worse from a signal-
to-noise standpoint. This makes sense in our formalism: these define 𝐾𝑗 such that 𝑝𝑗 ap-
pears in the denominator, not the numerator, and hence they downweight the high-frequency

8
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modes from the better-seeing images evenmore than the constant Fourier weighting of direct
coadds.

1.3 Full noise propagation

While the algorithm we have derived assumes stationary, uncorrelated noise, we can still use
it coadd images with more complex noise if we are willing to ignore the structure of that noise
when determining the weights. Just like PSF approximations, this means our coadds will no
longer be a sufficient statistic for the static sky, but the loss of information should be quite
small in practice.

To fully propagate the noise, we can use the same formula as [29], adjusted to use a full
covariance matrix 𝐶𝑗 for each input image:

𝐶𝑐[𝒓, 𝒔] = ∑
𝑗

∑𝒙𝑗
∑𝒚𝑗

𝐾𝑗(𝒓 − 𝑨𝑗𝒙𝑗 − 𝒃𝑗) 𝐾𝑗(𝒔 − 𝑨𝑗𝒚𝑗 − 𝒃𝑗) 𝐶𝑗[𝒙𝑗 , 𝒚𝑗] (33)

Unfortunately, even if the noise is just nonstationary (i.e. still uncorrelated), as is common
in astronomical images, the noise on the coadd ends up both nonstationary and correlated,
leaving [33] quite expensive in both compute and storage.

In practice, it will often be sufficient to propagate only the diagonal 𝐶𝑐[𝒓, 𝒓] (or even just the
original constant approximation 𝜎𝑐), and possibly augment this with a few Monte Carlo noise
fields: noise images that are coadded in exactly the same way as the true input images. Even
extremely demanding (in terms of systematic error control) science applications such as shear
estimation forweak lensing can often get bywith just oneMonte Carlo noise realization (TODO
citation).

2 Implementation options

2.1 Resampling in advance

In this section, we consider implementation options that assume all input images have already
been resampled to the coadd grid in advance, presumably via a compact image-domain in-
terpolant that approximates sinc (e.g. Lanczos). This inevitably introduces aliasing, which is

9
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traditionally ignored; we will ignore it here as well, but do consider it to be one of the disad-
vantages of these approaches.

2.1.1 Native-resolution FFT convolution and deconvolution

In this approach, input data images 𝑧𝑗 are FFT’d, whichmeanswemust first zero-pad themand
apply some sort of multiplicative ramp to a buffer region between the output data region and
the zero region, because the presence of sharp edges would cause problems. Best-available
PSF models 𝜙𝑗 and approximations 𝑝𝑗 are either rendered directly in the Fourier domain or
rendered as images and also FFT’d onto the same (discrete) Fourier grid. We then accumulate
the following sums:

Ψ̃𝑐[𝒖] = ∑
𝑗

𝑝∗
𝑗 [𝒖] 𝑧𝑗[𝒖]

𝜎2
𝑗

(34)

Φ̃(1)
𝑐 [𝒖] = ∑

𝑗

𝑝∗
𝑗 [𝒖] 𝜙𝑗[𝒖]

𝜎2
𝑗

(35)

Φ̃(2)
𝑐 [𝒖] = ∑

𝑗

𝑝∗
𝑗 [𝒖] 𝑝𝑗[𝒖]

𝜎2
𝑗

(36)

The unnormalized coadd PSF model 𝜙𝑐 is then

𝜙𝑐[𝒖]
𝜎2

𝑐
= Φ̃(1)

𝑐 [𝒖]

√Φ̃(2)
𝑐 [𝒖]

; (37)

we can then inverse FFT and solve for 𝜎𝑐 via

∑𝒓
𝜙𝑐[𝒓] = 1 . (38)

Finally, the Fourier-domain coadd image is

𝑧𝑐[𝒖] = Ψ̃𝑐[𝒖] 𝜎2
𝑐

√Φ̃(2)
𝑐 [𝒖]

, (39)

which we also inverse FFT to form the coadd image.
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This approach is in many respects the simplest possible implementation, especially if one
already has an optimized pipeline for image resampling. It is also probably among the fastest:
there are no expensive image-domain convolutions, and the padding necessary for the FFT is
probably only proportional to the PSF size, not the size of the coadd cell.

The main downside of this approach is its nonlocality in the image domain. The FFT division

by √Φ̃(2)
𝑐 [𝒖] in particular combines information from all pixels when computing the value of

any other pixel, so even output pixels far from the cell edge will be affected by our artificial
multiplicative ramp to some degree. The same is true of bad or missing pixels that are in-
terpolated in the input images; their effect cannot be confined to some region around the
interpolation.

It may be that this is not a serious problem in practice; the operations may be “local enough”
in the image domain for any systematic errors introduced to be negligible. But this is largely
an experimental question, and it certainly depends on the profiles of the input PSFs and their
approximations; the challenges come from the kids of messy situations that are often hard
to simulate, let alone analyze mathematically.

Because this method never actually constructs the weighting operators 𝐾𝑗 directly, there is
no direct way to propagate a full noise covariance matrix with it via [33]; if that kind of noise
propagation is desired one would instead have to construct a compact 𝐾𝑗 using a different
approach (e.g. Section 2.1.2) that is not quite the same as the one effectively used here. The
same is true of the extensions in Section 3 that make use of an image-domain 𝐾𝑗 .

2.1.2 Single-kernel image-domain convolution

This method is in many respects the opposite of the previous one, though it also assumes
the input data has been resampled. We work entirely in the image domain; we compute
approximations to 𝐾𝑗 and then use [23] and [27] to directly accumulate the coadd image and
effective PSF.

In order to make these discrete convolution operations efficient, we need to define 𝐾𝑗 ap-
proximations with strictly finite support in the image domain (even if it is derived from an
analytic form that does not truncate, we need to render images from it that do). This directly
addresses the locality problems with FFT methods, like the one described in Section 2.1.1;
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zero-padding and artificial ramps are unnecessary. We do need to expand the region we con-
volve by a buffer the size of 𝐾𝑗 , but after doing so we can be confident that the original target
region is fully unaffected by artifacts or missing pixels beyond that padding.

The challenge with this approach is in constructing the 𝐾𝑗 approximations; finite support in
the image domain makes it impossible to formally also make 𝐾𝑗 band-limited, but we need to
keep aliasing due to high-frequency power in 𝐾𝑗 to a minimum.

2.2 Combining resampling and weights

2.2.1 GALSIM-style Fourier-domain accumulation

2.2.2 Analytic single-kernel image-domain resampling and weights

3 Extensions for relaxed assumptions

3.1 Nonstationary noise

3.2 Undersampled input images

3.3 Missing pixels

3.4 Chromatic PSFs

A References

B Acronyms

Acronym Description
DM Data Management
DMTN DM Technical Note
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FFT Fast Fourier Transform
PSF Point Spread Function
SED Spectral Energy Distribution
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